• <small id="2yc0q"></small>
    <tfoot id="2yc0q"></tfoot>
  • <fieldset id="2yc0q"><rt id="2yc0q"></rt></fieldset>

    日韩在线视频观看,中文字幕第13亚洲另类,视频在线不卡免费观看,欧美日韩国产高清

    • 姓名: 張修政
    • 性別: 男
    • 職務(wù): 
    • 職稱(chēng): 研究員
    • 學(xué)歷: 博士研究生
    • 電話(huà): 020-85292501
    • 傳真: 
    • 電子郵件: zhangxz@gig.ac.cn
    • 通訊地址: 廣州市天河區科華街511號
      簡(jiǎn)  歷:
    •   張修政,研究員,1985年出生于陜西省安康市,基金委優(yōu)秀青年科學(xué)基金獲得者(2023。主要從事變質(zhì)巖和變質(zhì)作用研究,圍繞特提斯構造演化和青藏高原新生代隆升機制兩個(gè)方面開(kāi)展研究工作,聚焦青藏高原中北部的關(guān)鍵變質(zhì)巖石,重點(diǎn)關(guān)注深部高溫-超高溫麻粒巖地殼包體,通過(guò)系統的變質(zhì)作用、地球化學(xué)以及熱力學(xué)模擬研究,在造山帶深部熱演化與高原隆升方面取得多項創(chuàng )新成果。主持或參與了國家自然科學(xué)基金青年、面上、優(yōu)青、重點(diǎn)和創(chuàng )新群體項目、國家重點(diǎn)研發(fā)專(zhuān)項、第二次青藏高原科考等項目的研究。已發(fā)表國內外學(xué)術(shù)論文50篇,其中以第一/通訊作者身份在GeologyEarth and Planetary Science LettersTectonicsGeochemistry, Geophysics, GeosystemsLithos等刊物發(fā)表SCI論文18篇。

          

        2023.01 至今     中國科學(xué)院廣州地球化學(xué)研究所,研究員

        2018.01--2023.12  中國科學(xué)院廣州地球化學(xué)研究所,副研究員

        2017.08--2018.01  中國科學(xué)院廣州地球化學(xué)研究所,助理研究員

        2014.07--2017.08  中國科學(xué)院廣州地球化學(xué)研究所,博士后

        2009.09--2014.06  吉林大學(xué)地球科學(xué)學(xué)院,構造地質(zhì)學(xué)專(zhuān)業(yè),碩博連讀研究生

        2005.09--2009.07  吉林大學(xué)地球科學(xué)學(xué)院,地質(zhì)學(xué)專(zhuān)業(yè),本科學(xué)習

      社會(huì )任職:
    •  
      研究方向:
    •   1.深部地殼變質(zhì)巖包體,關(guān)注造山帶深部地殼熱演化過(guò)程、熱驅動(dòng)機制以及深部熱演化與淺表響應。

        2. 青藏高原中北部榴輝巖和藍片巖,重點(diǎn)關(guān)注其俯沖和折返的深部動(dòng)力學(xué)過(guò)程及相關(guān)B-Mo-Ti同位素研究

        3. 特提斯演化及岡瓦納大陸重建,重點(diǎn)關(guān)注相關(guān)高壓-超高壓和高溫-超高溫變質(zhì)巖研究

      獲獎及榮譽(yù):
    •  
      代表論著(zhù):
    • 第一/通訊作者論文:

      1. Zhang, X.Z., Wang, Q. *, Wyman, D., Ou, Q., Qi, Y., Gou, G.N., Dan, W., Yang, Y.N., 2022, Tibetan Plateau growth linked to crustal thermal transitions since the Miocene. Geology, 50(5): 610–614.

      2. Zhang, X. Z., Wang, Q.*, Wyman, D., Kerr, A., Dan, W., Qi, Y., 2022. Tibetan Plateau insights into >1100 crustal melting in the Quaternary. Geology, 50(12): 1432–1437.

      3. Zhang, X. Z., Dong, Y. S.*, Li, C., Deng, M. R., Zhang, L., Xu, W., 2014. Silurian high–pressure granulites from Central Qiangtang, Tibet: Constraints on early Paleozoic collision along the northeastern margin of Gondwana. Earth and Planetary Science Letters, 405, 39–51.

      4. Zhang, X.Z., * Wang, Q., Dan, W., Wyman, D., 2023, Locating Lhasa terrane in the Rodinia and Gondwana supercontinents: A key piece of the reconstruction puzzle: GSA Bulletin, 135(1-2): 67–80.

      5. Zhang, X.Z.*, Dong, Y. S., Wang, Q.*, Dan, W., Zhang, C., Deng, M. R., Xu, W., Xia, X.P., Zeng, J.P., Liang, H., 2016. Carboniferous and Permian evolutionary records for the Paleo‐Tethys Ocean constrained by newly discovered Xiangtaohu ophiolites from central Qiangtang, central Tibet. Tectonics, 35(7), 1670–1686.

      6. Zhang, X.Z.*, Wang, Q.*, Dong, Y.-S., Zhang, C., Li, Q.-Y., Xia, X.-P., & Xu, W., 2017. High-pressure granulite facies overprinting during the exhumation of eclogites in the Bangong-Nujiang suture zone, central Tibet: Link to flat-slab subduction. Tectonics, 36(12), 2918–2935.

      7. Zhang, X.Z.*, Dong, Y. S, Wang, Q.*, Dan, W., Zhang, C., Xu, W., Huang, M.L., 2017. Metamorphic records for subduction erosion and subsequent underplating processes revealed by garnet‐staurolite‐muscovite schists in central qiangtang, Tibet. Geochemistry Geophysics Geosystems, 18(1), 266-279.

      8. Zhang, X.Z., Wang, Q.*, Wyman, D., Kerr, A., Gou G.-N., Dan, W., Qi, Y., 2023. Are low-velocity zones within the Tibetan crust the result of crustal melting from at least 28 Ma? Lithos, 440-441, https://doi.org/10.1016/j.lithos.2023.107044

      9. Zhang, X.Z., Wang, Q.*, Wyman, D., Kerr, A., Gou G.-N., Dan, W., Qi, Y., 2023, Sediment recycling by continental subduction indicated by B-Hf-Pb-Nd isotopes from Miocene–Quaternary lavas in the northern margin of Tibet? Lithos, https://doi.org/10.1016/j.lithos.2023.107109

      10. Fan, J.J., Zhang, X.Z*., Ma L., Wang Q., Jiang Z.Q., Xia, X.P., Wei, G.J., Wang, Z.L., Zhou, J.S., Li, Q.W., Liu, X., Huang, T.Y., Zhang, M.Y., Liu, J.H., 2023. Formation of Eocene–Miocene felsic magmatic rocks along N–S-trending Yardoi-Kongbugang mountain ranges in the eastern Himalaya: New insights into surface uplift and the initiation of E–W extension in southern Tibet. GSA Bulletin, https://doi.org/10.1130/B36617.1.

      11. Liu, J.-H., Gou, G.-N., Wang, Q.*, Zhang, X.Z.*, Guo, H.-F., 2022. Petrogenesis of Eocene high-silica granites in the Maliaoshan area, northern Tibet: Implications for the Eocene magmatic flare-up in the Northern Qiangtang Block: Journal of Asian Earth Sciences, p. 105268, https://doi.org/10.1016/j.jseaes.2022.105268.

      12. Xu, C.-B., Zeng, J.-P., Wang, Q.*, Zhang, X.Z.*, Ou, Q., Wang, J., Hao, L.-L., Chen, Y., 2022. Eocene adakitic quartz monzonites and granite porphyries from the northern Qiangtang Block, central Tibet: Partial melting of sediment-rich m lange. Front. Earth Sci., 10:953448, doi: 10.3389/feart.2022.953448.

      13. Fan, J.J., Wang Q.*, Wei, G.J., Li, J., Ma L., Zhang, X.Z.*, Jiang, Zi-Qi Ma, J.L., Zhou, J.S., Li, Q.W., Wang, Z.L., Liu, X., Huang, T.Y., Zhang, M.Y., 2023. Boron and molybdenum isotope evidence for source-controlled compositional diversity of Cenozoic granites in the eastern Tethyan Himalaya. Geochemistry Geophysics Geosystems, 24, e2022GC010629. https://doi.org/10.1029/2022GC010629

      14. Ou, Q., Wang, Q. *, Wyman, D., Zhang, X.Z. *, Hao, L.L., Zeng, J.P., Yang, J.H., Zhang, H.X., Hou, M.C., Qi, Y., Liu, Z., 2022, Formation of late Miocene silicic volcanic rocks in the central Tibetan Plateau by crustal anatexis of granulites. Lithos, 432–433, 106882.

      15. 張修政, 董永勝*, 解超明, 謝堯武. 2010a. 安多地區高壓麻粒巖的發(fā)現及其意義. 巖石學(xué)報, 26 (7): 2106-2112

      16. 張修政, 董永勝*, 李才, 解超明, 楊韓濤, 王明. 2013. 青藏高原拉薩地塊北部新元古代中期蛇綠混雜巖帶的厘定及其意義. 巖石學(xué)報, 29 (2): 698-722.

      17. 張修政, 董永勝*, 李才, 解超明, 王明, 鄧明榮, 張樂(lè ). 2014a. 從洋殼俯沖到陸殼俯沖和碰撞: 來(lái)自羌塘中西部地區榴輝巖和藍片巖地球化學(xué)的證據. 巖石學(xué)報, 30 (10): 2821-2834

      18. 張修政, 董永勝*, 李才, 鄧明榮, 張樂(lè ), 許王. 2014b. 羌塘中部晚三疊世巖漿活動(dòng)的構造背景及成因機制以紅脊山地區香桃湖花崗巖為例. 巖石學(xué)報, 30 (2): 547-564

      19. 張修政, 董永勝, 施建榮, .羌塘中部龍木錯雙湖縫合帶中硬玉石榴石二云母片巖的成因及意義.地學(xué)前緣, 2010b,17(1):93-103.

      20. 張修政, 董永勝, 李才, .青藏高原羌塘中部不同時(shí)代榴輝巖的識別及其意義來(lái)自榴輝巖及其圍巖40Ar-39Ar年代學(xué)的證據.地質(zhì)通報, 2010c,29(12):1815-1824.

      21. 張修政, 董永勝, 李才, .青藏高原羌塘中部榴輝巖地球化學(xué)特征及其大地構造意義.地質(zhì)通報, 2010d,29(12):1804-1814.

      22. 張修政, 董永勝, 王強,但衛.青藏高原羌塘中部高壓變質(zhì)帶的研究進(jìn)展及存在問(wèn)題,地質(zhì)通報,2018, 37(8):1406-1416

      合作論文:

      23. Qi, Y., Wang, Q., Wei, G-J., Wyman, D., Zhang, X-Z., Dan, W., Zhang., L., Yang, Y-N., 2023. Post-Collisional Silica-Undersaturated Bamaoqiongzong Volcanic Rocks from Northern Qiangtang: Indicators of the Mantle Heterogeneity and Geodynamic Evolution of Central Tibet, Journal of Petrology. https://doi.org/10.1093/petrology/egac123.

      24. Qi, Y., Wang, Q., Wei, G-J., Zhang, X-Z., Dan, W., Yang, Y-N., Hao, L-L., Hu, W-L., 2023. Oligocene high-MgO alkali basalts in central Tibet: implications for magma–mush mixing and mantle processes. Journal of Petrology, egad091, https://doi.org/10.1093/petrology/egad091

      25. Wang, J., Wang, Q*., Sun, P., Dan, W., Kerr, A. C., Zhang, Z.-P., Zhang, L., Wei, G., Dong, H., Hu, W.-L., Yang, Z.-Y., Zhang, X.-Z., Qi. Y., 2023. Crustal growth identified by high- 18O zircon and olivine: A perspective from ultramafic arc cumulates in southern Tibet, Journal of Petrology. https://doi.org/10.1093/petrology/egad052

      26. Dan, W., Murphy, J. Brendan,Tang, G-J, Zhang, X-Z, White, William M., Wang, Q, 2023. Cambrian-Ordovician magmatic flare-up in NE Gondwana: A silicic large igneous province?. GSA Bulletin, 135(5-6): 1618-1632. DOI: 10.1130/B36331.1

      27. Dan, W., Yu, Z.-W., Wang, Q., Tang, G.-J., Zhang, X.-Z., Wang, J., 2023. Origin of the Songpan–Garz terrane, Tibetan Plateau: a perspective from the tectonic evolution of the Palaeo-Tethys Ocean, Geological Society, London, Special Publications. https://doi.org/10.1144/sp542-2022-349

      28. Dan, W., Murphy, J.B., Wang, Q., Zhang, X.Z., Tang, G.J., 2022. Tectonic evolution of the Proto-Qiangtang Ocean and its relationship with the Palaeo-Tethys and Rheic oceans. Hynes, A. J. and Murphy, J. B. (eds) The Consummate Geoscientist: A Celebration of the Career of Maarten de Wit. Geological Society, London, Special Publications, 531, https://doi.org/10.1144/SP531-2022-146.

      29. Fan, J.-J., Wang, Q.*, Ma, L., Li, J., Zhang, X.-Z., Zhang, L., Wang, Z.-L., 2022. Extreme Mo isotope variations recorded in high-SiO2 granites: Insights into magmatic differentiation and melt–fluid interaction. Geochimica et Cosmochimica Acta, 334: 241–258, https://doi.org/10.1016/j.gca.2022.08.009.

      30. Hu, W.-L., Wang, Q.*, Tang, G.-J., Zhang, X.-Z., Qi, Y., Wang, J., Ma, Y.-M., Yang, Z.-Y., Sun, P., Hao, L.-L., 2022. Late Early Cretaceous magmatic constraints on the timing of closure of the Bangong–Nujiang Tethyan Ocean, Central Tibet. Lithos, 416-417, 106648 https://doi.org/10.1016/j.lithos.2022.106648.

      31. Ma, Y.*, Wang, Q.*, Yang, T., Ou, Q., Zhang, X.Z., Dan, W., Zhang, S., Wu, H., Li, H., Cao, L., Wang, J., Zou, D., Wang, H., 2022. Location of the Lhasa terrane in the Late Cretaceous and its implications for crustal deformation. Palaeogeography, Palaeoclimatology, Palaeoecology, 588, 110821, https://doi.org/10.1016/j.palaeo.2021.110821.

      32. Qi, Y., Wang, Q.*, Wei, G.-J., Zhang, X.-Z., Dan, W., Hao, L.-L., and Yang, Y.-N., 2021. Late Eocene post-collisional magmatic rocks from the southern Qiangtang terrane record the melting of pre-collisional enriched lithospheric mantle. GSA Bulletin, 133 (11-12): 2612–2624, https://doi.org/10.1130/B35864.1.

      33. Dan, W., Wang, Q., Murphy, J.B., Zhang, X.-Z., Xu, Y.-G., White, W.M., Jiang, Z.-Q., Ou, Q., Hao, L.-L., Qi, Y. 2021. Short duration of Early Permian Qiangtang-Panjal large igneous province: Implications for origin of the Neo-Tethys Ocean. Earth and Planetary Science Letters, 568, 117054, https://doi.org/10.1016/j.epsl.2021.117054.

      34. Dan W., Wang Q., White W.M., Li X.H., Zhang X.Z., Tang G.J., Ou Q., Hao L.L., Qi Y., 2021. Passive-margin magmatism caused by enhanced slab-pull forces in central Tibet. Geology, 49 (2): 130–134, https://doi.org/10.1130/G47957.1

      35. Qi, Y., Hawkesworth, C. J., Wang, Q*, Wyman, D. A., Li, Z.X., Dong, H., Ma, T., Chen, F., Hu, W.L., and Zhang, X.Z., 2021. Syn-collisional magmatic record of Indian steep subduction by 50 Ma. GSA Bulletin, 133 (5-6), 949–962, https://doi.org/10.1130/B35498.1.

      36. Wang, Q*, Hao, L., Zhang, X.Z., Zhou, J., Wang, J., Li, Q., Ma, L., Zhang, L., Qi, Y., Tang, G., Dan, W., and Fan, J., 2020. Adakitic rocks at convergent plate boundaries: Compositions and petrogenesis. SCIENCE CHINA Earth Sciences, 63, 1992-2016, https://doi.org/10.1007/s11430-020-9678-y

      37. Wang, Q.*, Tang, G., Hao, L., Wyman, D., Ma, L., Dan, W., Zhang, X.Z., Liu, J., Huang, T., Xu, C., 2020. Ridge subduction, magmatism and metallogenesis. Science in China Earth Sciences, 63(10): 1499–1518, https://doi.org/10.1007/s11430-019-9619-9.

      38. Dan, W., Wang, Q., Zhang, X.-Z., and Tang, G.-J., 2020. Early Paleozoic S-type granites as the basement of Southern Qiantang Terrane, Tibet. Lithos, 356-357, 105395https://doi.org/10.1016/j.lithos.2020.105395

      39 Ma, Y.*, Wang, Q.*, Wang, J., Yang, T., Tan, X., Dan, W., Zhang,X.Z., Ma, L., Wang, Z.L.,  Hu,W.L., Zhang, S.H., Wu, H.C., Li, H.Y., Cao, L.W. 2019. Paleomagnetic constraints on the origin and drift history of the North Qiangtang terrane in the Late Paleozoic. Geophysical Research Letters, 46, 689–697. https://doi.org/10.1029/2018GL080964.

      40. Dan, W., Wang, Q., Li, X.-H., Tang, G.-J., Zhang, C., Zhang, X.-Z., and Wang, J. 2019. Low 18O magmas in the carboniferous intra-oceanic arc, central Tibet: Implications for felsic magma generation and oceanic arc accretion. Lithos, 326-327, 28-38.

      41. Wang, J., Wang, Q.*, Zhang, C., Dan, W.*, Qi, Y., Zhang, X.-Z., Xia, X.-P. 2018. Late Permian bimodal volcanic rocks in the northern Qiangtang Terrane, central Tibet: evidence for interaction between the Emeishan plume and the Paleo-Tethyan subduction system. Journal of Geophysical Research: Solid Earth, 123, 123, 6540–6561, DOI:10.1029/2018JB015568.

      42. Yang, Z. Y., Wang, Q.*, Zhang, C., Dan, W., Zhang, X. Z., Qi, Y., Xia, X.-P., Zhao, Z. H. 2018. Rare earth element tetrad effect and negative Ce anomalies of the granite porphyries in southern Qiangtang Terrane, central Tibet: New insights into the genesis of highly evolved granites. Lithos, 312–313, 258–273. doi: 10.1016/j.lithos.2018.04.018.

      43. Dan, W., Wang, Q., Zhang, X.-Z., Zhang, C., Tang, G.-J., Wang, J., Ou, Q., Hao, L.-L., and Qi, Y., 2018, Magmatic record of Late Devonian arc-continent collision in the northern Qiangtang, Tibet: Implications for the early evolution of East Paleo-Tethys Ocean. Lithos, 308-309, 104-117.

      44. Wang, J., Gou, G.-N., Wang, Q.*, Zhang, C., Dan, W. *, Wyman, D.A., and Zhang, X.-Z., 2018, Petrogenesis of the Late Triassic diorites in the Hoh Xil area, northern Tibet: Insights into the origin of the high-Mg# andesitic signature of continental crust. Lithos, 300-301, 348-360, DOI: 10.1016/j.lithos.2017.12.007.

      45. Dan, W., Wang, Q., White, W.M., Zhang, X.-Z., Tang, G.-J., Jiang, Z.-Q., Hao, L.-L., and Ou, Q. 2018. Rapid formation of eclogites during a nearly closed ocean: Revisiting the Pianshishan eclogite in Qiangtang, central Tibetan Plateau. Chemical Geology, 477, 112-122., DOI: 10.1016/j.chemgeo.2017.12.012.

      46. Wang, Q.*, Hawkesworth, C. J. *, Wyman, D., Chung, S.-L., Wu, F.-Y. Li, X.-H., Li, Z.-X., Gou, G.-N., Zhang, X.-Z., Tang, G.-J., Dan, W., Ma, L., Dong, Y.-H. 2016. Pliocene–Quaternary crustal melting in central and northern Tibet and insights into crustal flow. Nature Communications, 7:11888, doi: 10.1038/ncomms11888.

      47. Xu, W., Dong, Y., Zhang, X.Z., Deng, M., & Zhang, L. (2016). Petrogenesis of high-Ti mafic dykes from southern qiangtang, tibet: implications for a ca. 290 ma large igneous province related to the early permian rifting of gondwana. Gondwana Research, 36, 410-422.

      48. 王強,茍國寧,張修政,但衛,唐功建,馬林. 2017. 青藏高原中北部地殼流動(dòng)與高原擴展:來(lái)自火山巖的證據. 中國科學(xué)基金306):492-498.

      49. 姜慶運, 但衛, 王強, 張修政, 唐功建, 2021. 青藏高原北羌塘三疊紀花崗巖中發(fā)現新元古代的基底信息:來(lái)自鋯石SIMS U-Pb年齡和Hf-O同位素的約束. 大地構造與成礦學(xué), 45(02): 389-400.

      50. 但衛, 王強, 馬林, 唐功建, 張修政, 2023. 俯沖板塊板內巖漿作用和動(dòng)力學(xué). 礦物巖石地球化學(xué)通報, 42 (5), 10.19658/j.issn.1007-2802.2023.42.048

      承擔科研項目情況:
    •   1. 國家自然科學(xué)基金委,優(yōu)秀青年科學(xué)基金項目,《巖石學(xué)》,2024.012026.12項目負責人

        2. 國家自然科學(xué)基金委員會(huì ), 面上項目,《青藏高原中北部28–2.3Ma巖漿巖中地殼包體及深部地殼組成與熱演化》,2019-012022-12,項目負責人

        3. 科學(xué)技術(shù)部,第二次青藏高原綜合科學(xué)考察研究,《典型地區巖石圈組成、演化與深部過(guò)程》子專(zhuān)題12019-112024-10,主持

        4. 廣州市科學(xué)技術(shù)局,廣州市“科技菁英領(lǐng)航”項目,《造山帶深部地殼組成與熱演化》,2024-012026-12,項目負責人

        5. 廣州市科學(xué)技術(shù)局,廣州市珠江科技新星人才項目,《青藏高原深部地殼的熱演化與高原隆升》,2019-042021-03,項目負責人

        6. 科學(xué)技術(shù)部,國家任務(wù)/國家重點(diǎn)研發(fā)計劃,《燕山期重大地質(zhì)事件的深部過(guò)程與資源效應:揚子西緣及鄰區中生代的洋陸格局》(子專(zhuān)題),2016-072020-12,主持

        7. 國家自然科學(xué)基金委員會(huì ), 青年科學(xué)基金項目,《羌塘香桃湖地區與早古生代高壓變質(zhì)巖共生的多期深熔作用》,2016-012018-12,項目負責人